Standard Specification for

"Test Properties, Testing Frequency and Recommended Warranty for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes"

This specification was developed by the Geosynthetic Research Institute (GRI), with the cooperation of the member organizations for general use by the public. It is completely optional in this regard and can be superseded by other existing or new specifications on the subject matter in whole or in part. Neither GRI, the Geosynthetic Institute, nor any of its related institutes, warrant or indemnifies any materials produced according to this specification either at this time or in the future.

1. Scope

1.1 This specification covers high density polyethylene (HDPE) geomembranes with a formulated sheet density of 0.940 g/ml, or higher, in the thickness range of 0.75 mm (30 mils) to 3.0 mm (120 mils). Both smooth and textured geomembrane surfaces are included.

1.2 This specification sets forth a set of minimum, physical, mechanical and chemical properties that must be met, or exceeded by the geomembrane being manufactured. In a few cases a range is specified.

1.3 In the context of quality systems and management, this specification represents manufacturing quality control (MQC).

Note 1: Manufacturing quality control represents those actions taken by a manufacturer to ensure that the product represents the stated objective and properties set forth in this specification.

1.4 This standard specification is intended to ensure good quality and performance of HDPE geomembranes in general applications, but is possibly not adequate for the complete specification in a specific situation. Additional tests, or more restrictive
values for test indicated, may be necessary under conditions of a particular application.

1.5 This specification also presents a recommended warrant which is focused on the geomembrane material itself.

1.6 The recommended warrant attached to this specification does not cover installation considerations which is independent of the manufacturing of the geomembrane.

Note 2: For information on installation techniques, users of this standard are referred to the geosynthetics literature, which is abundant on the subject.

2. Referenced Documents

2.1 ASTM Standards

D 792 Specific Gravity (Relative Density) and Density of Plastics by Displacement
D 1004 Test Method for Initial Tear Resistance of Plastics Film and Sheeting
D 1238 Test Method for Flow Rates of Thermoplastics by Extrusion Plastometer
D 1505 Test Method for Density of Plastics by the Density-Gradient Technique
D 1603 Test Method for Carbon Black in Olefin Plastics
D 3895 Test Method for Oxidative Induction Time of Polyolefins by Thermal Analysis
D 4218 Test Method for Determination of Carbon Black Content in Polyethylene Compounds by the Muffle-Furnace Technique
D 4833 Test Method for Index Puncture Resistance of Geotextiles, Geomembranes and Related Products
D 5199 Test Method for Measuring Nominal Thickness of Geotextiles and Geomembranes
D 5397 Procedure to Perform a Single Point Notched Constant Tensile Load – (SP-NCTL) Test: Appendix
D 5596 Test Method for Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics
D 5721 Practice for Air-Oven Aging of Polyolefin Geomembranes
D 5885 Test method for Oxidative Induction Time of Polyolefin Geosynthetics by High Pressure Differential Scanning Calorimetry
D 5994 Test Method for Measuring the Core Thickness of Textured Geomembranes
D 6693 Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes

2.2 GRI Standards

GM10 Specification for the Stress Crack Resistance of Geomembrane Sheet
3. Definitions

Manufacturing Quality Control (MQC) - A planned system of inspections that is used to directly monitor and control the manufacture of a material which is factory originated. MQC is normally performed by the manufacturer of geosynthetic materials and is necessary to ensure minimum (or maximum) specified values in the manufactured product. MQC refers to measures taken by the manufacturer to determine compliance with the requirements for materials and workmanship as stated in certification documents and contract specifications. ref. EPA/600/R-93/182

Manufacturing Quality Assurance (MQA) - A planned system of activities that provides assurance that the materials were constructed as specified in the certification documents and contract specifications. MQA includes manufacturing facility inspections, verifications, audits and evaluation of the raw materials (resins and additives) and geosynthetic products to assess the quality of the manufactured materials. MQA refers to measures taken by the MQA organization to determine if the manufacturer is in compliance with the product certification and contract specifications for the project. ref. EPA/600/R-93/182

Formulation, n - The mixture of a unique combination of ingredients identified by type, properties and quantity. For HDPE polyethylene geomembranes, a formulation is defined as the exact percentages and types of resin(s), additives and carbon black.

4. Material Classification and Formulation

4.1 This specification covers high density polyethylene geomembranes with a formulated sheet density of 0.940 g/ml, or higher. Density can be measured by ASTM D1505 or ASTM D792. If the latter, Method B is recommended.

4.2 The polyethylene resin from which the geomembrane is made will generally be in the density range of 0.932 g/ml or higher, and have a melt index value per ASTM D1238 of less than 1.0 g/10 min.

4.3 The resin shall be virgin material with no more than 10% rework. If rework is used, it must be a similar HDPE as the parent material.
4.4 No post consumer resin (PCR) of any type shall be added to the formulation.

5. Physical, Mechanical and Chemical Property Requirements

5.1 The geomembrane shall conform to the test property requirements prescribed in Tables 1 and 2. Table 1 is for smooth HDPE geomembranes and Table 2 is for single and double sided textured HDPE geomembranes. Each of the tables are given in English and SI (metric) units. The conversion from English to SI (metric) is soft.

Note 3: The tensile strength properties in this specification were originally based on ASTM D 638 which uses a laboratory testing temperature of 23°C ± 2°C. Since ASTM Committee D35 on Geosynthetics adopted ASTM D 6693 (in place of D 638), this GRI Specification followed accordingly. The difference is that D 6693 uses a testing temperature of 21°C ± 2°C. The numeric values of strength and elongation were not changed in this specification. If a dispute arises in this regard, the original temperature of 23°C ± 2°C should be utilized for testing purposes.

Note 4: There are several tests often included in other HDPE specifications which are omitted from this standard because they are outdated, irrelevant or generate information that is not necessary to evaluate on a routine MQC basis. The following tests have been purposely omitted:

- Volatile Loss
- Dimensional Stability
- Coeff. of Linear Expansion
- Resistance to Soil Burial
- Low Temperature Impact
- ESCR Test (D 1693)
- Wide Width Tensile
- Water Vapor Transmission
- Water Absorption
- Ozone Resistance
- Modulus of Elasticity
- Hydrostatic Resistance
- Tensile Impact
- Field Seam Strength
- Multi-Axial Burst
- Various Toxicity Tests

Note 5: There are several tests which are included in this standard (that are not customarily required in other HDPE specifications) because they are relevant and important in the context of current manufacturing processes. The following tests have been purposely added:

- Oxidative Induction Time
- Oven Aging
- Ultraviolet Resistance
- Asperity Height of Textured Sheet
Note 6: There are other tests in this standard, focused on a particular property, which are updated to current standards. The following are in this category:

- Thickness of Textured Sheet
- Puncture Resistance
- Stress Crack Resistance
- Carbon Black Dispersion (In the viewing and subsequent quantitative interpretation of ASTM D 5596 only near spherical agglomerates shall be included in the assessment).

Note 7: There are several GRI tests currently included in this standard. Since these topics are not covered in ASTM standards, this is necessary. They are the following:

- UV Fluorescent Light Exposure
- Asperity Height Measurement

5.2 The values listed in the tables of this specification are to be interpreted according to the designated test method. In this respect they are neither minimum average roll values (MARV) nor maximum average roll values (MaxARV).

5.3 The properties of the HDPE geomembrane shall be tested at the minimum frequencies shown in Tables 1 and 2. If the specific manufacturer's quality control guide is more stringent and is certified accordingly, it must be followed in like manner.

Note 8: This specification is focused on manufacturing quality control (MQC). Conformance testing and manufacturing quality assurance (MQA) testing are at the discretion of the purchaser and/or quality assurance engineer, respectively.

6. Workmanship and Appearance

6.1 Smooth geomembrane shall have good appearance qualities. It shall be free from such defects that would affect the specified properties of the geomembrane.

6.2 Textured geomembrane shall generally have uniform texturing appearance. It shall be free from agglomerated texturing material and such defects that would affect the specified properties of the geomembrane.

6.3 General manufacturing procedures shall be performed in accordance with the manufacturer's internal quality control guide and/or documents.
7. MQC Sampling

7.1 Sampling shall be in accordance with the specific test methods listed in Tables 1 and 2. If no sampling protocol is stipulated in the particular test method, then test specimens shall be taken evenly spaced across the entire roll width.

7.2 The number of tests shall be in accordance with the appropriate test methods listed in Tables 1 and 2.

7.3 The average of the test results should be calculated per the particular standard cited and compared to the minimum value listed in these tables, hence the values listed are the minimum average values and are designated as "min. ave."

8. MQC Retest and Rejection

8.1 If the results of any test do not conform to the requirements of this specification, retesting to determine conformance or rejection should be done in accordance with the manufacturing protocol as set forth in the manufacturer's quality manual.

9. Packaging and Marketing

9.1 The geomembrane shall be rolled onto a substantial core or core segments and held firm by dedicated straps/slings, or other suitable means. The rolls must be adequate for safe transportation to the point of delivery, unless otherwise specified in the contract or order.

10. Certification

10.1 Upon request of the purchaser in the contract or order, a manufacturer's certification that the material was manufactured and tested in accordance with this specification, together with a report of the test results, shall be furnished at the time of shipment.

11. Warranty

11.1 Upon request of the purchaser in the contract or order, a manufacturer's warrant of the quality of the material shall be furnished at the completion of the terms of the contract.

11.2 A recommended warranty for smooth and textured HDPE geomembranes manufactured and tested in accordance with this specification is given in Appendix A.

11.3 The warranty in Appendix A is for the geomembrane itself. It does not cover subgrade preparation, installation, seaming, or backfilling. These are separate
operations that are often beyond the control, or sphere of influence, of the geomembrane manufacturer.

Note 9: If a warrant is required for installation, it is to be developed between the installation contractor and the party requesting such a document.
Table 1(a) – High Density Polyethylene (HDPE) Geomembrane - Smooth

<table>
<thead>
<tr>
<th>Properties</th>
<th>Test Method</th>
<th>30 mils</th>
<th>40 mils</th>
<th>50 mils</th>
<th>60 mils</th>
<th>80 mils</th>
<th>100 mils</th>
<th>120 mils</th>
<th>Testing Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>• lowest individual of 10 values</td>
<td>D1505/D792</td>
<td>0.940 g/cc</td>
<td>200,00 lb</td>
</tr>
<tr>
<td>Density mg/l (min.)</td>
<td></td>
<td>-10%</td>
<td>-10%</td>
<td>-10%</td>
<td>-10%</td>
<td>-10%</td>
<td>-10%</td>
<td>-10%</td>
<td>20,000 lb</td>
</tr>
<tr>
<td>Tensile Properties (1) (min. ave.)</td>
<td>D 6693</td>
<td>63 lb/in.</td>
<td>84 lb/in.</td>
<td>105 lb/in.</td>
<td>126 lb/in.</td>
<td>168 lb/in.</td>
<td>210 lb/in.</td>
<td>252 lb/in.</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>• yield strength</td>
<td>Type IV</td>
<td>14 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>• break strength</td>
<td></td>
<td>14 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>12 lb/in.</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>• yield elongation</td>
<td></td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>• break elongation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45,000 lb</td>
</tr>
<tr>
<td>Tear Resistance (min. ave.)</td>
<td>D 1004</td>
<td>21 lb</td>
<td>28 lb</td>
<td>35 lb</td>
<td>42 lb</td>
<td>56 lb</td>
<td>70 lb</td>
<td>84 lb</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>Puncture Resistance (min. ave.)</td>
<td>D 4833</td>
<td>54 lb</td>
<td>72 lb</td>
<td>90 lb</td>
<td>108 lb</td>
<td>144 lb</td>
<td>180 lb</td>
<td>216 lb</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>Stress Crack Resistance (2)</td>
<td>D 5397</td>
<td>300 hr.</td>
<td>per GRI-GM10</td>
</tr>
<tr>
<td>Carbon Black Content (range)</td>
<td>D 1603 (3)</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>20,000 lb</td>
</tr>
<tr>
<td>Carbon Black Dispersion</td>
<td>D 5596</td>
<td>note (4)</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>Oxidative Induction Time (OIT) (min. ave.) (5)</td>
<td>D 3895</td>
<td>100 min.</td>
<td>200,000 lb</td>
</tr>
<tr>
<td>(a) Standard OIT</td>
<td>D 5885</td>
<td>400 min.</td>
<td></td>
</tr>
<tr>
<td>(b) High Pressure OIT</td>
<td></td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>per each formulation</td>
</tr>
<tr>
<td>Oven Aging at 85°C (5), (6)</td>
<td>D 3895</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>(a) Standard OIT (min. ave.) - % retained after 90 days</td>
<td>D 5885</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>(b) High Pressure OIT (min. ave.) - % retained after 90 days</td>
<td>D 5885</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>(a) Standard OIT (min. ave.)</td>
<td>D 3895</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>(b) High Pressure OIT (min. ave.) - % retained after 1600 hrs (9)</td>
<td>D 5885</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>7000 lb</td>
</tr>
</tbody>
</table>

(1) Machine direction (MD) and cross machine direction (XMD) average values should be on the basis of 5 test specimens each direction.

Yield elongation is calculated using a gage length of 1.3 inches

Break elongation is calculated using a gage length of 2.0 in.

(2) The yield stress used to calculate the applied load for the SP-NCTL test should be the manufacturer’s mean value via MQC testing.

(3) Other methods such as D 4218 (muffle furnace) or microwave methods are acceptable if an appropriate correlation to D 1603 (tube furnace) can be established.

(4) Carbon black dispersion (only near spherical agglomerates) for 10 different views:

9 in Categories 1 or 2 and 1 in Category 3

(5) The manufacturer has the option to select either one of the OIT methods listed to evaluate the antioxidant content in the geomembrane.

(6) It is also recommended to evaluate samples at 30 and 60 days to compare with the 90 day response.

(7) The condition of the test should be 20 hr. UV cycle at 75°C followed by 4 hr. condensation at 60°C.

(8) Not recommended since the high temperature of the Std-OIT test produces an unrealistic result for some of the antioxidants in the UV exposed samples.

(9) UV resistance is based on percent retained value regardless of the original HP-OIT value.
Table 1(b) – High Density Polyethylene (HPDE) Geomembrane - Smooth

<table>
<thead>
<tr>
<th>Properties</th>
<th>Test Method</th>
<th>0.75 mm</th>
<th>1.00 mm</th>
<th>1.25 mm</th>
<th>1.50 mm</th>
<th>2.00 mm</th>
<th>2.50 mm</th>
<th>3.00 mm</th>
<th>Testing Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness - mils (min. ave.)</td>
<td>DS199</td>
<td>nom. (mil)</td>
<td>-10%</td>
<td>-10%</td>
<td>-10%</td>
<td>-10%</td>
<td>-10%</td>
<td>-10%</td>
<td>per roll</td>
</tr>
<tr>
<td>Density (min.)</td>
<td>D 1505/D 792</td>
<td>0.940 g/cc</td>
<td>90,000 kg</td>
</tr>
<tr>
<td>Tensile Properties (1) (min. ave.)</td>
<td>D 6693 Type IV</td>
<td>11 kN/m</td>
<td>15 kN/m</td>
<td>18 kN/m</td>
<td>22 kN/m</td>
<td>29 kN/m</td>
<td>37 kN/m</td>
<td>44 kN/m</td>
<td>9,000 kg</td>
</tr>
<tr>
<td>- yield strength</td>
<td></td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>20,000 kg</td>
</tr>
<tr>
<td>- break strength</td>
<td></td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>700%</td>
<td>20,000 kg</td>
</tr>
<tr>
<td>Tear Resistance (min. ave.)</td>
<td>D 1004</td>
<td>93 N</td>
<td>125 N</td>
<td>156 N</td>
<td>187 N</td>
<td>249 N</td>
<td>311 N</td>
<td>374 N</td>
<td>20,000 kg</td>
</tr>
<tr>
<td>Puncture Resistance (min. ave.)</td>
<td>D 4833</td>
<td>240 N</td>
<td>320 N</td>
<td>400 N</td>
<td>480 N</td>
<td>640 N</td>
<td>800 N</td>
<td>960 N</td>
<td>20,000 kg</td>
</tr>
<tr>
<td>Stress Crack Resistance (2)</td>
<td>D 5397 (App.)</td>
<td>300 hr.</td>
<td>20,000 kg</td>
</tr>
<tr>
<td>Carbon Black Content - %</td>
<td>D 1603 (5)</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>2.0-3.0%</td>
<td>9,000 kg</td>
</tr>
<tr>
<td>Carbon Black Dispersion</td>
<td>D 5596 note</td>
<td>note (4)</td>
<td>20,000 kg</td>
</tr>
<tr>
<td>Oxidative Induction Time (OIT) (min. ave.) (5)</td>
<td>D 3895</td>
<td>100 min.</td>
<td>90,000 kg</td>
</tr>
<tr>
<td>(a) Standard OIT — or —</td>
<td>D 5885</td>
<td>400 min.</td>
<td>per each formulation</td>
</tr>
<tr>
<td>(b) High Pressure OIT</td>
<td>D 5721</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>per each formulation</td>
</tr>
<tr>
<td>Oven Aging at 85°C (5), (6)</td>
<td>D 3895</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>per each formulation</td>
</tr>
<tr>
<td>(a) Standard OIT (min. ave.)</td>
<td>D 5885</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>per each formulation</td>
</tr>
</tbody>
</table>

(1) Machine direction (MD) and cross machine direction (XMD) average values should be on the basis of 5 test specimens each direction.

(2) The yield stress used to calculate the applied load for the SP-NCTL test should be the manufacturer’s mean value via MQC testing.

(3) Other methods such as D 4218 (muffle furnace) or microwave methods are acceptable if an appropriate correlation to D 1603 (tube furnace) can be established.

(4) Carbon black dispersion (only near spherical agglomerates) for 10 different views: 9 in Categories 1 or 2 and 1 in Category 3

(5) The manufacturer has the option to select either one of the OIT methods listed to evaluate the antioxidant content in the geomembrane.

(6) It is also recommended to evaluate samples at 30 and 60 days to compare with the 90 day response.

(7) The condition of the test should be 20 hr. UV cycle at 75°C followed by 4 hr. condensation at 60°C.

(8) Not recommended since the high temperature of the Std-OIT test produces an unrealistic result for some of the antioxidants in the UV exposed samples.

(9) UV resistance is based on percent retained value regardless of the original HP-OIT value.
Table 2(a) – High Density Polyethylene (HDPE) Geomembrane - Textured

<table>
<thead>
<tr>
<th>Properties</th>
<th>Test Method</th>
<th>Test Value</th>
<th>Testing Frequency (minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness mils (min. ave.)</td>
<td>D 5994</td>
<td>nom. (-5%)</td>
<td>per roll</td>
</tr>
<tr>
<td>lowest individual for 8 out of 10 values</td>
<td>30 mils</td>
<td>nom. (-5%)</td>
<td>-10%</td>
</tr>
<tr>
<td>lowest individual for any of the 10 values</td>
<td>40 mils</td>
<td>nom. (-5%)</td>
<td>-15%</td>
</tr>
<tr>
<td></td>
<td>50 mils</td>
<td>nom. (-5%)</td>
<td>-15%</td>
</tr>
<tr>
<td></td>
<td>60 mils</td>
<td>nom. (-5%)</td>
<td>-15%</td>
</tr>
<tr>
<td></td>
<td>80 mils</td>
<td>nom. (-5%)</td>
<td>-15%</td>
</tr>
<tr>
<td></td>
<td>100 mils</td>
<td>nom. (-5%)</td>
<td>-15%</td>
</tr>
<tr>
<td></td>
<td>120 mils</td>
<td>nom. (-5%)</td>
<td>-15%</td>
</tr>
<tr>
<td>Asperity Height mils (min. ave.)</td>
<td>GM 12</td>
<td>10 mil</td>
<td>every 2nd roll (2)</td>
</tr>
<tr>
<td>Density (min. ave.) (1)</td>
<td>D 1505/D 792</td>
<td>0.940 g/cc</td>
<td>200,000 lb</td>
</tr>
<tr>
<td>Tensile Properties (min. ave.) (3)</td>
<td>D 6693</td>
<td>Type IV</td>
<td>20,000 lb</td>
</tr>
<tr>
<td>yield strength</td>
<td>63 lb/in.</td>
<td>45 lb/in.</td>
<td>12%</td>
</tr>
<tr>
<td>break strength</td>
<td>84 lb/in.</td>
<td>60 lb/in.</td>
<td>12%</td>
</tr>
<tr>
<td>yield elongation</td>
<td>105 lb/in.</td>
<td>75 lb/in.</td>
<td>12%</td>
</tr>
<tr>
<td>break elongation</td>
<td>126 lb/in.</td>
<td>90 lb/in.</td>
<td>12%</td>
</tr>
<tr>
<td>Tear Resistance (min. ave.)</td>
<td>D 1004</td>
<td>21 lb</td>
<td>55%</td>
</tr>
<tr>
<td>Puncture Resistance (min. ave.)</td>
<td>D 4833</td>
<td>45 lb</td>
<td>55%</td>
</tr>
<tr>
<td>Stress Crack Resistance (4)</td>
<td>D 5397 (App.)</td>
<td>300 hr.</td>
<td>per GRI GM10</td>
</tr>
<tr>
<td>Carbon Black Content (range)</td>
<td>D 1603 (5)</td>
<td>2.0-3.0 %</td>
<td>20,000 lb</td>
</tr>
<tr>
<td>Carbon Black Dispersion</td>
<td>D 5596</td>
<td>note (6)</td>
<td>45,000 lb</td>
</tr>
<tr>
<td>Oxidative Induction Time (OIT) (min. ave.) (7)</td>
<td>D 3895</td>
<td>100 min.</td>
<td>200,000 lb</td>
</tr>
<tr>
<td>(a) Standard OIT — or —</td>
<td>D 5885</td>
<td>400 min.</td>
<td>100 min.</td>
</tr>
<tr>
<td>(b) High Pressure OIT</td>
<td></td>
<td></td>
<td>100 min.</td>
</tr>
<tr>
<td>Oven Aging at 85°C (7) (8)</td>
<td>D 5721</td>
<td>55%</td>
<td>per each formulation</td>
</tr>
<tr>
<td>(a) Standard OIT (min. ave.) - % retained after 90 days</td>
<td>D 3895</td>
<td>55%</td>
<td>55%</td>
</tr>
<tr>
<td>— or —</td>
<td>D 5885</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>(b) High Pressure OIT (min. ave.) - % retained after 90 days</td>
<td></td>
<td></td>
<td>80%</td>
</tr>
<tr>
<td>UV Resistance (9)</td>
<td>GM11</td>
<td>N.R. (10)</td>
<td>9 in Categories 1 or 2 and 1 in Category 3</td>
</tr>
<tr>
<td>(a) Standard OIT (min. ave.)</td>
<td>D 3895</td>
<td>N.R. (10)</td>
<td>55%</td>
</tr>
<tr>
<td>— or —</td>
<td>D 5885</td>
<td>N.R. (10)</td>
<td>80%</td>
</tr>
<tr>
<td>(b) High Pressure OIT (min. ave.) - % retained after 1600 hrs (11)</td>
<td></td>
<td></td>
<td>50%</td>
</tr>
</tbody>
</table>

(1) Of 10 readings; 8 out of 10 must be ≥ 7 mils, and lowest individual reading must be ≥ 5 mils
(2) Alternate the measurement side for double sided textured sheet
(3) Machine direction (MD) and cross machine direction (XMD) average values should be on the basis of 5 test specimens each direction. Yield elongation is calculated using a gage length of 1.3 inches Break elongation is calculated using a gage length of 2.0 inches
(4) P-NCTL test is not appropriate for testing geomembranes with textured or irregular rough surfaces. Test should be conducted on smooth edges of textured rolls or on smooth sheets made from the same formulation as being used for the textured sheet materials.
(5) Other methods such as D 4218 (muffle furnace) or microwave methods are acceptable if an appropriate correlation to D 1603 (tube furnace) can be established.
(6) Carbon black dispersion (only near spherical agglomerates) for 10 different views:
(7) The manufacturer has the option to select either one of the OIT methods listed to evaluate the antioxidant content in the geomembrane.
(8) It is also recommended to evaluate samples at 30 and 60 days to compare with the 90 day response.
(9) The condition of the test should be 20 hr. UV cycle at 75°C followed by 4 hr. condensation at 60°C.
(10) Not recommended since the high temperature of the Std-OIT test produces an unrealistic result for some of the antioxidants in the UV exposed samples.
(11) UV resistance is based on percent retained value regardless of the original HP-OIT value.
Table 2(b) – High Density Polyethylene (HDPE) Geomembrane - Textured

<table>
<thead>
<tr>
<th>Properties</th>
<th>Test Method</th>
<th>Test Value</th>
<th>Testing Frequency (minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness mils (min. ave.)</td>
<td>D 5994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• lowest individual for 8 out of 10 values</td>
<td></td>
<td>0.75 mm nom. (+5%)</td>
<td>per roll</td>
</tr>
<tr>
<td>• lowest individual for any of the 10 values</td>
<td></td>
<td>1.00 mm -10%</td>
<td></td>
</tr>
<tr>
<td>Asperity Height mils (min. ave.) (1)</td>
<td>GM 12</td>
<td>0.25 mm</td>
<td>every 2nd roll (2)</td>
</tr>
<tr>
<td>Density (min. ave.) (3)</td>
<td>D 1505/D 792</td>
<td>0.940 g/cc</td>
<td></td>
</tr>
<tr>
<td>Tensile Properties (min. ave.) (3)</td>
<td>D 6695 Type IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• yield strength</td>
<td>D 1004</td>
<td>93 N</td>
<td></td>
</tr>
<tr>
<td>• break strength</td>
<td>D 4833</td>
<td>200N</td>
<td></td>
</tr>
<tr>
<td>• yield elongation</td>
<td>D 5397 (App.)</td>
<td>300 hr.</td>
<td></td>
</tr>
<tr>
<td>• break elongation</td>
<td>D 1603 (5)</td>
<td>2.0-3.0 %</td>
<td></td>
</tr>
<tr>
<td>Carbon Black Content (range)</td>
<td>D 5596</td>
<td>note (6)</td>
<td></td>
</tr>
<tr>
<td>Oxidative Induction Time (OIT) (min. ave.) (7)</td>
<td>D 3895</td>
<td>100 min.</td>
<td>90,000 kg</td>
</tr>
<tr>
<td>(a) Standard OIT</td>
<td>D 5885</td>
<td>400 min.</td>
<td></td>
</tr>
<tr>
<td>(b) High Pressure OIT</td>
<td>D 3895</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>Oven Aging at 85°C (7) (8)</td>
<td>D 5721</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>(a) Standard OIT (min. ave.) - % retained after 90 days</td>
<td>D 3895</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>(b) High Pressure OIT (min. ave.) - % retained after 90 days</td>
<td>D 5885</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>UV Resistance (9)</td>
<td>GM11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Standard OIT (min. ave.)</td>
<td>D 3895</td>
<td>N.R. (10)</td>
<td></td>
</tr>
<tr>
<td>(b) High Pressure OIT (min. ave.) - % retained after 1600 hrs (11)</td>
<td>D 5885</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

(1) Of 10 readings; 8 out of 10 must be ≥ 0.18 mm, and lowest individual reading must be ≥ 0.13 mm
(2) Alternate the measurement side for double sided textured sheet
(3) Machine direction (MD) and cross machine direction (XMD) average values should be on the basis of 5 test specimen each direction.
Yield elongation is calculated using a gage length of 33 mm
Break elongation is calculated using a gage length of 50 mm

(4) The SP-NCTL test is not appropriate for testing geomembranes with textured or irregular rough surfaces. Test should be conducted on smooth edges of textured rolls or on smooth sheets made from the same formulation as being used for the textured sheet materials.

The yield stress used to calculate the applied load for the SP-NCTL test should be the manufacturer’s mean value via MQC testing.

(5) Other methods such as D 4218 (muffle furnace) or microwave methods are acceptable if an appropriate correlation to D 1603 (tube furnace) can be established.

(6) Carbon black dispersion (only near spherical agglomerates) for 10 different views:
9 in Categories 1 or 2 and 1 in Category 3

(7) The manufacturer has the option to select either one of the OIT methods listed to evaluate the antioxidant content in the geomembrane.

(8) It is also recommended to evaluate samples at 30 and 60 days to compare with the 90 day response.

(9) The condition of the test should be 20 hr. UV cycle at 75°C followed by 4 hr. condensation at 60°C.

(10) Not recommended since the high temperature of the Std-OIT test produces an unrealistic result for some of the antioxidants in the UV exposed samples.

(11) UV resistance is based on percent retained value regardless of the original HP-OIT value.
Appendix “A”

Typical HDPE Geomembrane Warranty
ABC GEOMEMBRANE COMPANY
LIMITED WARRANTY

Warranty No: __________________________
Project No: __________________________
Effective Date: __________________________

Purchaser Name: __________________________
Address/Location: __________________________
City, State, Zip, Country: __________________________

Title: __________________________
Effective Date: __________________________

Purchaser acknowledges by acceptance that the Limited Warranty given herein is accepted in preference to any and other possible warranties.

ABC Geomembrane Company warrants each ABC geomembrane to be free from manufacturing defects (as defined by the contract’s material specifications) and to be able to withstand normal weathering for a period of 5 years from the above effective date for normal use in approved applications.

This Limited Warranty does not include damages or defects in the ABC geomembrane resulting from acts of God, casualty or catastrophe including but not limited to: earthquakes, floods, piercing hail, tornadoes or force majeure. The term “normal use” as used herein does not include, among other things the exposure of ABC geomembranes to harmful chemicals, abuse of ABC geomembranes by machinery, equipment or people; improper site preparation or covering materials, excessive pressures or stresses from any source or improper application or installation. ABC geomembrane material warranty is intended for commercial use only and is not in effect for the consumer as defined in the Magnuson Moss Warranty or any similar federal, state, or local statutes. The parties expressly agree that the sale hereunder is for commercial or industrial use only.

Should defects or premature loss of use within the scope of the above Limited Warranty occur, ABC Geomembrane Company will, at its option, repair or replace the ABC geomembrane on a pro-rata basis at the then current price in such manner as to charge the Purchaser for only that portion of the purchased life which has elapsed since purchase of the material. ABC Geomembrane Company will have the right to inspect and determine the cause of any alleged defect in the ABC geomembrane and to take appropriate steps to repair or replace the ABC geomembrane if a defect exists which is covered under this warranty. This Limited Warranty extends only to ABC’s geomembrane, and does not extend to the installation service of ABC Geomembrane Company or third parties.

Any claim for any alleged breach of this warranty must be made in writing, by certified mail, to the President of ABC Geomembrane within ten (10) days of becoming aware of the alleged defect. Should the required notice not be given, the defect and all warranties are waived by the Purchaser, and Purchaser shall not have any rights under this warranty. ABC Geomembrane Company shall not be obligated to perform repairs or replacements under this warranty unless and until the area to be repaired or replaced is clean, dry, and unencumbered. This includes, but is not limited to, the area made available for repair and/or replacement of ABC geomembrane to be free from all water, dirt, sludge, residuals and liquids of any kind. If after inspection it is determined that there is no claim under this Limited Warranty, Purchaser shall reimburse ABC Geomembrane Company for its costs associated with the site inspection.

In the event the exclusive remedy provided herein fails in its essential purpose, and in that event only, the Purchaser shall be entitled to a return of the purchase price for so much of the material as ABC Geomembrane Company determines to have violated the warranty provided herein. ABC Geomembrane Company shall not be liable for direct, indirect, special, consequential or incidental damages resulting from a breach of this warranty including, but not limited to, damages for loss of production, lost profits, personal injury or property damage. ABC Geomembrane Company shall not be obligated to reimburse Purchaser for any repairs, replacement, modifications or alterations made by Purchaser unless ABC Geomembrane Company specifically authorized, in writing, said repairs, replacements, modifications or alteration in advance of them having been made. ABC Geomembrane Company’s liability under this warranty shall in no event exceed the replacement cost of the material sold to the Purchaser for the particular installation in which it failed.

ABC Geomembrane Company neither assumes nor authorizes any person other than the undersigned of ABC Geomembrane Company to assume for it any other or additional liability in connection with the ABC geomembrane made on the basis of the Limited Warranty. The Limited Warranty on the ABC geomembrane herein is given in lieu of all other possible material warranties, either expressed or implied, and by accepting delivery of the material, Purchaser waives all other possible warranties, except those specifically given.

Limited Warranty is extended to the purchaser/owner and is non-transferable and non-assignable; i.e., there are no third-party beneficiaries to this warranty.

Purchaser acknowledges by acceptance that the Limited Warranty given herein is accepted in preference to any and other possible materials warranties.

ABC GEOMEMBRANE COMPANY MAKES NO WARRANTY OF ANY KIND OTHER THAN THAT GIVEN ABOVE AND HEREBY DISCLAIMS ALL WARRANTIES, BOTH EXPRESSED OR IMPLIED, OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THIS IS THE ONLY WARRANTY THAT APPLIES TO THE MATERIALS REFERRED TO HEREIN AND ABC DISCLAIMS ANY LIABILITY FOR ANY WARRANTIES GIVEN BY ANY OTHER PERSON OR ENTITY, EITHER WRITTEN OR ORAL.

ABC GEOMEMBRANE COMPANY’S WARRANTY BECOMES AN OBLIGATION OF ABC GEOMEMBRANE COMPANY TO PERFORM UNDER THE WARRANTY ONLY UPON RECEIPT OF FINAL

I hereby state that I have read and understand the above and foregoing Limited Warranty and agree to such by signing hereunder.

Purchaser Name: __________________________
Signature: __________________________
Date: __________________________

ABC Geomembrane Company:
(President or Authorized Representative)

Signature: __________________________
Date: __________________________

Title: __________________________

Sworn before me this day of 200

GM13 - 13 of 14
rev. 6 – 6/23/03
Adoption and Revision Schedule

for

HDPE Specification per GRI-GM13

“Test Properties, Testing Frequency and Recommended Warrant for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes”

Adopted: June 17, 1997

Revision 1: November 20, 1998; changed CB dispersion from allowing 2 views to be in Category 3 to requiring all 10 views to be in Category 1 or 2. Also reduced UV percent retained from 60% to 50%.

Revision 2: April 29, 1999: added to Note 5 after the listing of Carbon Black Dispersion the following: “(In the viewing and subsequent quantitative interpretation of ASTM D5596 only near spherical agglomerates shall be included in the assessment)” and to Note (4) in the property tables.

Revision 3: June 28, 2000: added a new Section 5.2 that the numeric table values are neither MARV or MaxARV. They are to be interpreted per the designated test method.

Revision 4: December 13, 2000: added one Category 3 is allowed for carbon black dispersion. Also, unified terminology to “strength” and “elongation”.

Revision 5: May 15, 2003: Increased minimum acceptable stress crack resistance time from 200 hrs to 300 hrs.

Revision 6: June 23, 2003: Adopted ASTM D 6693, in place of ASTM D 638, for tensile strength testing. Also, added Note 2.